Downregulation of SEPTIN11 inhibits endometrial epithelial cell adhesive function in patients with elevated peripheral blood natural killer cell counts.

Reproductive biomedicine online(2023)

引用 0|浏览2
暂无评分
摘要
RESEARCH QUESTION:What is the underlying mechanism of IVF and embryo transfer (IVF-ET) failure in patients with elevated peripheral blood natural killer cell (pNK) counts? DESIGN:Patients undergoing IVF-ET cycles for tubal obstruction or pelvic adhesion (n = 486) were assigned to three groups: high (CD56+CD16+pNK >30% [n = 49]); medium (15< CD56+CD16+pNK ≤30% [n = 211]); and normal pNK groups (5≤ CD56+CD16+pNK ≤15% [n = 226]). Their general condition, previous pregnancy history and IVF outcomes were compared. Uterine fluid and endometrial tissue from patients in the high and normal pNK groups were collected during the mid-secretory phase and studied to elucidate the molecular mechanism underlying impaired endometrial receptivity. RESULTS:The highest incidence of IVF-ET cycles (P < 0.0001) and biochemical pregnancy losses (P < 0.0001), and lowest implantation and clinical pregnancy rates (both P < 0.0001), were observed in patients with pNK over 30%. No significant difference was found in the number of previous miscarriages and rate of spontaneous miscarriage in IVF outcomes. Lower Septin11 (SEPT11) expression in the uterine fluid and endometrial epithelial cells (EEC), and higher endometrial IFN-γ, was observed in patients with high pNK. Ishikawa cell and human endometrial epithelial cell (HEEC) adhesion was inhibited after SEPT11 knock-down. Elevated IFN-γ decreased the SEPT11 protein levels in Ishikawa cells and HEECs. CONCLUSIONS:CD56+CD16+pNK above 30% may be a threshold for adverse IVF-ET outcomes. Low SEPT11 expression in EEC inhibits cell adhesion, which may cause impaired endometrial receptivity in patients with elevated pNK. The level of SEPT11 in mid-secretory uterine fluid could serve as a non-invasive marker to assess endometrial receptivity in these patients.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要