Interface-Mediated Mechanoluminescence Enhancement from Heterojunction Phosphors: Experiment and Theory.

ACS applied materials & interfaces(2023)

引用 0|浏览8
暂无评分
摘要
Mechanoluminescence (ML) phosphors have made significant progress in various fields, such as artificial intelligence, the Internet of Things, and biotechnology. However, enhancing their weak ML intensity still remains a challenge. Here, we report a new series of NaMgNbO:Pr ( = 0.00, 0.10, 0.20, 0.40, 0.60, 0.80, and 1.00 mol %) heterojunction systems, which exhibit significant ML enhancement as compared with either the Pr-doped NaNbO or MgNbO, and the physical mechanisms behind the ML enhancement have been explored comprehensively from both the experiment and theory points of view. Experimental tests, including thermoluminescence and positron annihilation lifetime measurements, combined with first-principles calculations, consistently indicate that the ML enhancement observed in these newly reported systems is due to the formation of heterojunctions, which plays a crucial role in modulating the defect configuration of the phosphors and facilitating efficient charge transfer. By controlling the Na/Mg ratio in conjunction with Pr doping, continuous changes in the band offset and the concentrations of certain types of traps in the forbidden gap are achieved, leading to the optimum conditions in the 8/2 ratio samples. These findings demonstrate a novel type of ML phosphor and provide a theoretical basis for the design of high-performance ML phosphor.
更多
查看译文
关键词
mechanoluminescence, heterostructures, Pr3+-doped NaNbO3, positron annihilationlifetime, first-principles calculations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要