Ebselen derivatives inhibit SARS-CoV-2 replication by inhibition of its essential proteins: PL pro and M pro proteases, and nsp14 guanine N7-methyltransferase

Scientific reports(2023)

引用 3|浏览10
暂无评分
摘要
Proteases encoded by SARS-CoV-2 constitute a promising target for new therapies against COVID-19. SARS-CoV-2 main protease (M pro , 3CL pro ) and papain-like protease (PL pro ) are responsible for viral polyprotein cleavage—a process crucial for viral survival and replication. Recently it was shown that 2-phenylbenzisoselenazol-3(2 H )-one (ebselen), an organoselenium anti-inflammatory small-molecule drug, is a potent, covalent inhibitor of both the proteases and its potency was evaluated in enzymatic and antiviral assays. In this study, we screened a collection of 34 ebselen and ebselen diselenide derivatives for SARS-CoV-2 PL pro and M pro inhibitors. Our studies revealed that ebselen derivatives are potent inhibitors of both the proteases. We identified three PL pro and four M pro inhibitors superior to ebselen. Independently, ebselen was shown to inhibit the N7-methyltransferase activity of SARS-CoV-2 nsp14 protein involved in viral RNA cap modification. Hence, selected compounds were also evaluated as nsp14 inhibitors. In the second part of our work, we employed 11 ebselen analogues—bis(2-carbamoylaryl)phenyl diselenides—in biological assays to evaluate their anti-SARS-CoV-2 activity in Vero E6 cells. We present their antiviral and cytoprotective activity and also low cytotoxicity. Our work shows that ebselen, its derivatives, and diselenide analogues constitute a promising platform for development of new antivirals targeting the SARS-CoV-2 virus.
更多
查看译文
关键词
ebselen derivatives,proteins,mpro proteases,sars-cov
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要