Methods to Improve the Stability of Nucleic Acid-Based Nanomaterials.

Xueping Xie,Wenjuan Ma,Yuxi Zhan, Qifeng Zhang, Chaowei Wang,Huiyong Zhu

Current drug metabolism(2023)

引用 1|浏览4
暂无评分
摘要
Nucleic acid strands can be synthesized into various nucleic acid-based nanomaterials (NANs) through strict base pairing. The self-assembled NANs are programmable, intelligent, biocompatible, non-immunogenic, and noncytotoxic. With the rapid development of nanotechnology, the application of NANs in the biomedical fields, such as drug delivery and biological sensing, has attracted wide attention. However, the stability of NANs is often affected by the cation concentrations, enzymatic degradation, and organic solvents. This susceptibility to degradation is one of the most important factors that have restricted the application of NANs. NANs can be denatured or degraded under conditions of low cation concentrations, enzymatic presence, and organic solvents. To deal with this issue, a lot of methods have been attempted to improve the stability of NANs, including artificial nucleic acids, modification with specific groups, encapsulation with protective structures, etc. In this review, we summarized the relevant methods to have a deeper understanding of the stability of NANs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要