Mutualism reduces the severity of gene disruptions in predictable ways across microbial communities.

bioRxiv : the preprint server for biology(2023)

引用 1|浏览3
暂无评分
摘要
Predicting evolution in microbial communities is critical for problems from human health to global nutrient cycling. Understanding how species interactions impact the distribution of fitness effects for a focal population would enhance our ability to predict evolution. Specifically, it would be useful to know if the type of ecological interaction, such as mutualism or competition, changes the average effect of a mutation (i.e., the mean of the distribution of fitness effects). Furthermore, how often does increasing community complexity alter the impact of species interactions on mutant fitness? To address these questions, we created a transposon mutant library in and measured the fitness of loss of function mutations in 3,550 genes when grown alone versus competitive co-culture or mutualistic co-culture with and We found that mutualism reduces the average impact of mutations, while competition had no effect. Additionally, mutant fitness in the 3-species communities can be predicted by averaging the fitness in each 2-species community. Finally, the fitness effects of several knockouts in the mutualistic communities were surprising. We discovered that is obtaining a different source of carbon and more vitamins and amino acids than we had expected. Our results suggest that species interactions can predictably impact fitness effect distributions, in turn suggesting that evolution may ultimately be predictable in multi-species communities.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要