Visualization of all two-qubit states via partial-transpose-moments

PHYSICAL REVIEW A(2023)

引用 0|浏览10
暂无评分
摘要
Efficiently detecting entanglement based on measurable quantities is a basic problem for quantum information processing. Recently, the measurable quantities called partial-transpose (PT)-moments have been proposed to detect and characterize entanglement. In the recently published paper [L. Zhang \emph{et al.}, \href{https://doi.org/10.1002/andp.202200289}{Ann. Phys.(Berlin) \textbf{534}, 2200289 (2022)}], we have already identified the 2-dimensional (2D) region, comprised of the second and third PT-moments, corresponding to two-qubit entangled states, and described the whole region for all two-qubit states. In the present paper, we visualize the 3D region corresponding to all two-qubit states by further involving the fourth PT-moment (the last one for two-qubit states). The characterization of this 3D region can finally be achieved by optimizing some polynomials. Furthermore, we identify the dividing surface which separates the two parts of the whole 3D region corresponding to entangled and separable states respectively. Due to the measurability of PT-moments, we obtain a complete and operational criterion for the detection of two-qubit entanglement.
更多
查看译文
关键词
visualization,two-qubit,partial-transpose
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要