Recipes for Jet Feedback and Spin Evolution of Black Holes with Strongly Magnetized Super-Eddington Accretion Disks

ASTROPHYSICAL JOURNAL LETTERS(2023)

引用 1|浏览4
暂无评分
摘要
A spinning black hole (BH) accreting from a disk of strongly magnetized plasma via a magnetically arrested disk is known to produce an efficient electromagnetic jet powered by the BH's spin energy. We present general relativistic radiative magnetohydrodynamic simulations of magnetically arrested systems covering a range of sub- to super-Eddington accretion rates. Using the numerical results from these simulations, we develop formulae to describe the magnetization, jet efficiency, and spin evolution of an accreting BH as a function of its spin and accretion rate. A BH with near-Eddington accretion experiences a mild degree of spin-down because of angular momentum loss through the jet, leading to an equilibrium spin of 0.8 rather than 1.0 at the Eddington limit. As the accretion rate increases above Eddington, the spin-down effect becomes progressively stronger, ultimately converging on previous predictions based on nonradiative simulations. In particular, spin evolution drives highly super-Eddington systems toward a BH spin near zero. The formulae developed in this letter may be applied to galaxy- and cosmological-scale simulations that include BHs. If magnetically arrested disk accretion is common among supermassive BHs, the present results have broad implications for active galactic nucleus feedback and cosmological spin evolution.
更多
查看译文
关键词
black holes,spin evolution,jet feedback,strongly-magnetized,super-eddington
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要