Integrated frequency-modulated optical parametric oscillator

Hubert S. Stokowski,Devin J. Dean, Alexander Y. Hwang,Taewon Park, Oguz Tolga Celik, Timothy P. McKenna,Marc Jankowski, Carsten Langrock,Vahid Ansari, Martin M. Fejer,Amir H. Safavi-Naeini

Nature(2024)

引用 0|浏览40
暂无评分
摘要
Optical frequency combs have revolutionized precision measurement, time-keeping and molecular spectroscopy 1 – 7 . A substantial effort has developed around ‘microcombs’: integrating comb-generating technologies into compact photonic platforms 5 , 7 – 9 . Current approaches for generating these microcombs involve either the electro-optic 10 or Kerr mechanisms 11 . Despite rapid progress, maintaining high efficiency and wide bandwidth remains challenging. Here we introduce a previously unknown class of microcomb—an integrated device that combines electro-optics and parametric amplification to yield a frequency-modulated optical parametric oscillator (FM-OPO). In contrast to the other solutions, it does not form pulses but maintains operational simplicity and highly efficient pump power use with an output resembling a frequency-modulated laser 12 . We outline the working principles of our device and demonstrate it by fabricating the complete optical system in thin-film lithium niobate. We measure pump-to-comb internal conversion efficiency exceeding 93% (34% out-coupled) over a nearly flat-top spectral distribution spanning about 200 modes (over 1 THz). Compared with an electro-optic comb, the cavity dispersion rather than loss determines the FM-OPO bandwidth, enabling broadband combs with a smaller radio-frequency modulation power. The FM-OPO microcomb offers robust operational dynamics, high efficiency and broad bandwidth, promising compact precision tools for metrology, spectroscopy, telecommunications, sensing and computing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要