E-beam-enhanced solid-state mechanical amorphization of α-quartz: Reduced deformation barrier via localized excess electrons as network modifiers

Materials Today(2023)

引用 0|浏览0
暂无评分
摘要
Under hydrostatic pressure, α-quartz (α-SiO2) undergoes solid-state mechanical amorphization wherein the interpenetration of [SiO4]2− tetrahedra occurs and the material loses crystallinity. This phase transformation requires a high hydrostatic pressure of 14 GPa because the repulsive forces resulting from the ionic nature of the Si–O bonds prevent the severe distortion of the atomic configuration. Herein, we experimentally and computationally demonstrate that e-beam irradiation changes the nature of the interatomic bonds in α-quartz and enhances the solid-state mechanical amorphization at nanoscale. Specifically, during in situ uniaxial compression, a larger permanent deformation occurs in α-quartz submicron pillars compressed during e-beam irradiation than in those without e-beam irradiation. Microstructural analysis reveals that the large permanent deformation under e-beam irradiation originates from the enhanced mechanical amorphization of α-quartz and the subsequent viscoplastic deformation of the amorphized region. Further, atomic-scale simulations suggest that the delocalized excess electrons introduced by e-beam irradiation move to highly distorted atomic configurations and alleviate the repulsive force, thus reducing the barrier to the solid-state mechanical amorphization. These findings deepen our understanding of electron–matter interactions and can be extended to new glass forming and processing technologies at nano- and microscale.
更多
查看译文
关键词
Crystalline silica,Amorphization,E-beam,Excess charge
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要