PLA-based nature-inspired architecture for bone scaffolds: A finite element analysis

Computers in Biology and Medicine(2023)

引用 0|浏览0
暂无评分
摘要
The implantation of bio-degradable scaffolds is considered as a promising approach to address the repair of bone defects. This article aims to develop a computational approach to study the mechanical behaviour, fluid dynamic, and degradation impact on polylactic acid scaffolds with nature-inspired design structures. Scaffold design is considered to be one of the main factors for the regulation of mechanical characteristics and fluid flow dynamics. In this article, five scaffolds with different nature-inspired architectures have been designed within a specific porosity range. Based on finite element analysis, their mechanical behaviour and computational fluid dynamic study are performed to evaluate the respective properties of different scaffolds. In addition, diffusion-governed degradation analysis of the scaffolds has been performed to compute the total time required for the scaffold to degrade within a given environment. Based on the mechanical behaviour, the Spider-web architecture scaffold was found to have the least deformation, and also the lowest value of equivalent stress and strain. The Nautilus Shell architecture scaffold had the highest value of equivalent stress and strain. The permeability of all the scaffolds was found to meet the requirement of the cancellous bone. All computational fluid dynamics (CFD) results of wall shear stress are in line with the requirement for cell differentiation. It was observed that the Spider-web architecture scaffold had undergone the slowest degradation, and the Giant Water Lily architecture scaffold experienced the fastest degradation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要