Response control of RPLGD for gamma-ray dose measurement using lead filters for BNCT

K. Tochitani, K. Tomiyoshi, T. Inoue, F. Kamisaki, M. Matsuki,K. Hiramatsu, K. Aoki, S. Kusaka, S. Tamaki, F. Sato,I. Murata

Applied Radiation and Isotopes(2023)

引用 0|浏览3
暂无评分
摘要
Boron Neutron Capture Therapy (BNCT) is a cell-selective radiotherapy using a neutron capture reaction of 10B. In recent years, Accelerator Based Neutron Sources (ABNS) are under development instead of nuclear reactors for the next-generation neutron irradiation system for BNCT. However, ABNS as well as nuclear reactor usually generates unavoidable secondary gamma-rays by neutron-nuclear reactions such as capture reaction. In this research, we aimed to develop a separate measurement method of only gamma-rays in a mixed field of neutrons and gamma-rays using a fluorescent glass dosimeter (RPLGD), because most dosimeters have sensitivity to both radiation types. For this purpose, we proposed a lead filter method using two RPLGDs and lead filters. However, this method has a problem that the sensitivity to low energy gamma-rays (similar to 100 keV) is very small. In order to improve the sensitivity to low energy gamma-rays, we devised a method using a specially shaped lead filter. From theoretical calculations, we have shown that it was possible to estimate the air dose rate of the field where the gamma-ray energy spectrum shape was known for energies up to 10 MeV. In addition, we produced the specially shaped lead filter and experimentally confirmed the validity of the lead filter method using several gamma-ray standard sources and by measurements in a nuclear fuel storage room.
更多
查看译文
关键词
lead filters,rplgd,bnct,gamma-ray
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要