Computational insights into the conformational transition of STING: Mechanistic, energetic considerations, and the influence of crucial mutations

Journal of Molecular Graphics and Modelling(2024)

引用 0|浏览1
暂无评分
摘要
STING (stimulator of interferon genes) is a crucial protein in the innate immune system's response to viral and bacterial infections. In this study, we investigated the mechanistic and energetic mechanism of the conformational transition process of STING activated by cGAMP binding. We found that the STING connector region undergoes an energetically unfavorable rotation during this process, which is compensated by the favorable interaction between cGAMP and the STING ligand binding domain. We further studied several disease-causing mutations and found that the V155 M mutation facilitates a smoother transition in the STING connector region. However, the V147L mutation exhibits unfavorable conformational transition energy, suggesting it may hinder STING activation pathway that relies on connector region rotation. Despite being labeled as hyperactive, the widespread prevalence of V147L/V147I mutations across species implies a neutral character, indicating complexity in its role. Overall, our analysis deepens the understanding of STING activation within the connector region, and targeting this region with compounds may provide an alternative approach to interfering with STING's function.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要