Balancing MXene Surface Termination and Interlayer Spacing Enables Superior Microwave Absorption

ADVANCED FUNCTIONAL MATERIALS(2023)

引用 7|浏览8
暂无评分
摘要
Surface chemistry and interlayer engineering determines the electrical properties of 2D MXene. However, it remains challenging to regulate the surface and interfacial chemistry of MXene simultaneously. Herein, simultaneous modulation of Ti3C2Tx MXene surface termination and layer spacing by alkali treatment are achieved. The electrical and electromagnetic properties of Ti3C2Tx are investigated in detail with respect to KOH and ammonia concentration dependence. A high concentration of KOH caused the Ti3C2Tx layer spacing to expand to 13.7 angstrom and the surface O/F ratio to increase to 33.84. Because of its weaker ionization effect, ammonia provides finer tuning compared to the drastic intercalation of KOH with a thorough sweeping of the F-containing groups. Ti3C2Tx is enriched with conductive -OH termination after ammonia treatment, which achieves an effective balance with the increased interlayer resistance. Therefore, NH3H2O-Ti3C2Tx achieves broad-band impedance matching and exhibits an efficient microwave loss of -49.1 dB at a low thickness of 1.7 mm, with an effective frequency bandwidth of 3.9 GHz. The results herein optimize the electrical properties of Ti3C2Tx using surface and interfacial chemistry to achieve broad microwave absorption, providing a framework for enhancing the electromagnetic wave loss of intrinsic MXene.
更多
查看译文
关键词
mxene surface termination,interlayer spacing,microwave,absorption
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要