InBi Bimetallic Sites for Efficient Electrochemical Reduction of CO2 to HCOOH

SMALL(2023)

引用 0|浏览5
暂无评分
摘要
Formic acid is receiving intensive attention as being one of the most progressive chemical fuels for the electrochemical reduction of carbon dioxide. However, the majority of catalysts suffer from low current density and Faraday efficiency. To this end, an efficient catalyst of In/Bi-750 with InOx nanodots load is prepared on a two-dimensional nanoflake Bi2O2CO3 substrate, which increases the adsorption of *CO2 due to the synergistic interaction between the bimetals and the exposure of sufficient active sites. In the H-type electrolytic cell, the formate Faraday efficiency (FE) reaches 97.17% at -1.0 V (vs reversible hydrogen electrode (RHE)) with no significant decay over 48 h. A formate Faraday efficiency of 90.83% is also obtained in the flow cell at a higher current density of 200 mA cm(-2). Both in-situ Fourier transform infrared spectroscopy (FT-IR) and theoretical calculations show that the BiIn bimetallic site can deliver superior binding energy to the *OCHO intermediate, thereby fundamentally accelerating the conversion of CO2 to HCOOH. Furthermore, assembled Zn-CO2 cell exhibits a maximum power of 6.97 mW cm(-1) and a stability of 60 h.
更多
查看译文
关键词
efficient electrochemical reduction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要