Modelling changes in secondary inorganic aerosol formation and nitrogen deposition in Europe from 2005 to 2030

crossref(2021)

引用 0|浏览0
暂无评分
摘要
Abstract. Secondary inorganic PM2.5 particles are formed from SOx, NOx and ammonia emissions, through the formation of either ammonium sulphate or ammonium nitrate. EU limits and WHO guidelines for PM2.5 levels are frequently exceeded in Europe, in particular in the winter months. In addition the critical loads for eutrophication are exceeded in most of the European continent. Further reductions in ammonia emissions and other PM precursors beyond the 2030 requirements could alleviate some of the health burden from fine particles, and also reduce the deposition of nitrogen to vulnerable ecosystems. Using the regional scale EMEP/MSC-W model, we have studied the effects of year 2030 ammonia emissions on PM2.5 concentrations and depositions of nitrogen in Europe in the light of present (2017) and past (2005) conditions. Our calculations show that in Europe the formation of PM2.5 from ammonia to a large extent is limited by the ratio between the emissions of ammonia on one hand, and SOx plus NOx, on the other hand. As the ratio of ammonia to SOx and NOx is increasing, the potential to further curb PM2.5 levels through reductions in ammonia emissions is decreasing. Here we show that per gram of ammonia emissions mitigated, the resulting reductions in PM2.5 levels simulated using 2030 emissions are about a factor of 2.6 lower than when 2005 emissions are used. However, this ratio is lower in winter, thus further reductions in the ammonia emissions in winter may have similar potentials as SOx and NOx in curbing PM2.5 levels in this season. Following the expected reductions of ammonia emission, depositions of reduced nitrogen should also decrease in Europe. However, as the reductions in NOx emission are larger than for ammonia, the fraction of total nitrogen (reduced plus oxidised nitrogen) deposited as reduced nitrogen is increasing and may exceed 60 % in most of Europe by 2030. Thus the potential for future reductions in the exceedances of critical loads for eutrophication in Europe will mainly rely on the ability to reduce ammonia emissions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要