Quantum R\'enyi and $f$-divergences from integral representations

arXiv (Cornell University)(2023)

引用 1|浏览3
暂无评分
摘要
Smooth Csisz\'ar $f$-divergences can be expressed as integrals over so-called hockey stick divergences. This motivates a natural quantum generalization in terms of quantum Hockey stick divergences, which we explore here. Using this recipe, the Kullback-Leibler divergence generalises to the Umegaki relative entropy, in the integral form recently found by Frenkel. We find that the R\'enyi divergences defined via our new quantum $f$-divergences are not additive in general, but that their regularisations surprisingly yield the Petz R\'enyi divergence for $\alpha < 1$ and the sandwiched R\'enyi divergence for $\alpha > 1$, unifying these two important families of quantum R\'enyi divergences. Moreover, we find that the contraction coefficients for the new quantum $f$ divergences collapse for all $f$ that are operator convex, mimicking the classical behaviour and resolving some long-standing conjectures by Lesniewski and Ruskai. We derive various inequalities, including new reverse Pinsker inequalites with applications in differential privacy and also explore various other applications of the new divergences.
更多
查看译文
关键词
integral representations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要