Robust Multi-Campaign Imaging Spectrometer Methane Plume Detection using Deep Learning

Authorea (Authorea)(2023)

引用 0|浏览5
暂无评分
摘要
Identification of global methane (CH4) sources is critical to the quantification and mitigation of this greenhouse gas. Future imaging spectrometer missions, such as Carbon Mapper, will provide global, spatially resolved observations that will make it possible to accurately map methane sources. However, the sheer data volume of these missions make manual source identification infeasible, and expected artifacts in matched filter methane plume identification challenge simple thresholding. Recent works have demonstrated the feasibility of Convolutional Neural Networks (CNNs) for plume detection; however, in the past, these models have suffered from high false positive rates and were limited in their training and evaluation to individual flight campaigns. We have assembled quality-controlled tiled datasets from three Airborne Visible/Infrared Imaging Spectrometer Next Generation (AVIRIS-NG) campaigns: a 2020 California campaign (“COVID”), a 2019 Texas Permian Basin campaign (“Permian”), and another 2018 California campaign (“CACH4”). These datasets are notable for their diversity of surface conditions, spatial resolutions, and source types (oil & gas, energy, waste, livestock). Labeled methane sources in these datasets have been manually verified, and flightlines with systematic artifacts have been filtered out. We trained a GoogLeNet CNN classifier model on each of these campaigns to evaluate intra- and inter- campaign performance. We also trained a model on all three campaigns and evaluated its performance on each dataset. We observed an F1 performance of 0.7 or greater for each model trained and evaluated on its own dataset. We also observed that the model trained on all three datasets often outperforms individual models on multiple metrics. Finally, we converted the model into a fully convolutional network (FCN) for methane plume saliency map generation. We plan to extend this work to datasets acquired by the Global Airborne Observatory (GAO) and prepare a model for deployment for the Carbon Mapper orbital data product pipeline.
更多
查看译文
关键词
deep learning,methane,detection,multi-campaign
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要