Suppressing the Mechanochromism of Flexible Photonic Crystals

Fabio Kraft, Katharina Harwardt, Jan Schardt,Dirk Nowotka,Martina Gerken

crossref(2023)

引用 0|浏览0
暂无评分
摘要
We present flexible photonic crystal slabs (PCS) obtained by sputtering of a dielectric 100 nm Nb2O5 high refractive index layer onto a flexible nanostructured polydimethylsiloxane (PDMS) substrate with 370 nm grating period. The PCS exhibit a guided mode resonance at around 650 nm. We demonstrate that these flexible photonic crystal slabs show less than 0.5 nm resonance shift for 4% strain and call them stabilized PCS (sPCS). We compare this to a resonance shift of ~21 nm for ~4% strain of a flexible photonic crystal with a flexible nanoparticle high index layer (mechanochromatic PCS, mPCS). This high resonance shift is expected from the Bragg equations, where 4 % grating period change correspond to approximately 4 % change of the resonance wavelength (i.e., ~26 nm at a resonance wavelength of 650 nm), if changes in the mode effective refractive index are neglected. In a stretch series we obtain color-to-strain dependencies of 4.79 nm/% strain for mPCS and 0.11 nm/% strain for our stabilized sPCS. We analyze the suppression of the mechanochromism with detailed microscopy results. We observe that fissures and fractures form in the rigid waveguiding layer of the sPCS upon mechanical stress. An algorithm based on Holistically-Nested Edge Detection (HED) is used for automated counting of cracks. Rigid photonic crystal cells with sizes on the order of 10 µm to 100 µm are formed that explain the stable optical properties. Even more stable optical properties with less than 0.03 nm wavelength shift per 1% strain are demonstrated for sPCS with an additional dielectric 100 nm SiO2 low index layer beneath the Nb2O5 waveguide layer decoupling the waveguide further from the flexible PDMS substrate.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要