Toluene-Mercuric Modified Usepa Method 3060a to Eliminate Interference of Sulfide-Based Reductants with Cr(Vi) Determination

SSRN Electronic Journal(2023)

引用 0|浏览2
暂无评分
摘要
The validity of USEPA Method 3060A as universal Cr(VI) analysis method for remediated soil is controversial. We investigated soil Cr(VI) remediation performance by commonly used reductants (FeSO4, CaSx, Na2S) under different operating conditions (dosage, curing time and degree of mixing) using Method 3060A, and developed modified 3060A specific for sulfide-based reductants. Results showed that Cr(VI) was primarily removed during analysis stage rather than remediation stage. Thereinto, chemical dosage played a much more important role than curing time and degree of mixing. Besides, soil Cr(VI) concentration decreased to below the detection limit with residual reductant content increasing. Comparing standard and toluene-mercuric modified 3060A, Cr(VI) removal efficiency decreased from 100 % to 38.9-45.4 %, 67.1-68.8 % and 94.1-96.3 %, corresponding to mixing degree of 33 %, 67 % and 100 %, for treated soil using 1× and 2× the molar stoichiometric ratio of CaSx. Subsequently, the optimization mechanism was revealed. Elemental sulfur, remediation product of sulfide-based reductants, was removed from soil by toluene preventing its disproportionation to sulfide at Method 3060A stage. Sulfide was fixed by mercuric oxide in species of mercuric sulfide. This method also proved suitable for different types of soils. Therefore, an effective way for scientific evaluation of soil Cr(VI) remediation was provided in this study.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要