Rapid molecular phenotypic antimicrobial susceptibility test forNeisseria gonorrhoeaebased on propidium monoazide viability PCR

ACS Infectious Diseases(2023)

引用 0|浏览6
暂无评分
摘要
AbstractNeisseria gonorrhoeae(NG) is an urgent threat to antimicrobial resistance (AMR) worldwide. NG has acquired rapid resistance to all previously recommended treatments leaving ceftriaxone monotherapy as the first and last line of therapy for uncomplicated NG. The ability to rapidly determine susceptibility, which is currently nonexistent for NG, has been proposed as a strategy to preserve ceftriaxone by using alternative treatments. Herein, we used a DNA-intercalating dye in combination with NG-specific primers/probes to generate qPCR cycle threshold (Ct) values at different concentrations of 2 NG-relevant antimicrobials. Our proof of concept dual-antimicrobial logistic regression model based on the differential Ct measurements achieved an AUC of 0.93 with a categorical agreement for susceptibility of 84.6%. When surveying the performance against each antimicrobial separately, the model predicted 90% and 75% susceptible and resistant strains respectively to ceftriaxone and 66.7% and 83.3% susceptible and resistant strains respectively to ciprofloxacin. We further validated the model against the individual replicates and determined the accuracy of the model in classifying susceptibility agnostic of the inoculum size. We demonstrated a novel PCR-based approach to determine phenotypic ciprofloxacin and ceftriaxone susceptibility information for NG with reasonable accuracy in under 30 min, a significant improvement compared to the conventional method which takes 3 days.Table of Content Graphic
更多
查看译文
关键词
antimicrobial,pcr
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要