Preparation of In Situ Growth Multiscale β-Sialon Grain-Reinforced Al2O3-Based Composite Ceramic Tool Materials

Materials(2023)

引用 1|浏览4
暂无评分
摘要
A kind of multiscale β-sialon grain-reinforced Al2O3 matrix composite ceramic tool material, named ASN, was prepared and studied. For the ASN, β-sialon (molecular formula: Si4Al2O2N6) was synthesized in situ by a hot-pressing and solid-solution reaction process. A total of six samples were prepared at varying sintering temperatures and holding times under vacuum conditions. The solid solution reaction mechanism of β-sialon, the phase composition, mechanical properties, microstructure, and strengthening and toughening mechanisms of the composite ASN were investigated. As a result, within the experimental parameters, an optimal ASN tool material was obtained under a pressure of 32 MPa and at a temperature of 1550 °C for 20 min. The tested mechanical properties of the optimal sample were as follows: flexural strength 997 ± 59 MPa, fracture toughness 6.4 ± 0.3 MPa·m1/2, Vickers hardness 18.2 ± 0.4 GPa, and relative density 98.1 ± 0.2%. According to crystal defect theory, the solid solution reaction mechanism of in-situ-synthesized β-sialon in an Al2O3 matrix involves a double mechanism of unequivalence (or hetero-valence) and interstitial filling. The multiscale β-sialon grains mainly consisted of four grains, which were elongated β-sialon grains with a diameter of 0.3–0.4 μm and an aspect ratio of 6–9, elongated β-sialon grains with a diameter of 70 nm and an aspect ratio of 10, β-sialon whiskers with a diameter of 0.2 μm and an aspect ratio of 12–15, and intragranular β-sialon whiskers with a diameter of 70 nm. The mechanical properties were improved due to strengthening and toughening mechanisms, such as mixed structure mode (intergranular and transgranular), elongated grain pullout, interface bonding, crack reflection, pinning, and bridging.
更多
查看译文
关键词
grain-reinforced
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要