Temperature-chemistry coupling in the evolution of gas giant atmospheres driven by stellar flares

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY(2023)

引用 0|浏览8
暂无评分
摘要
The effect of enhanced UV irradiation associated with stellar flares on the atmospheric composition and temperature of gas giant exoplanets was investigated. This was done using a 1D radiative-convective-chemical model with self-consistent feedback between the temperature and the non-equilibrium chemistry. It was found that flare-driven changes to chemical composition and temperature give rise to prolonged trends in evolution across a broad range of pressure levels and species. Allowing feedback between chemistry and temperature plays an important role in establishing the quiescent structure of these atmospheres, and determines their evolution due to flares. It was found that cooler planets are more susceptible to flares than warmer ones, seeing larger changes in composition and temperature, and that temperature-chemistry feedback modifies their evolution. Long-term exposure to flares changes the transmission spectra of gas giant atmospheres; these changes differed when the temperature structure was allowed to evolve self-consistently with the chemistry. Changes in spectral features due to the effects of flares on these atmospheres can be associated with changes in composition. The effects of flares on the atmospheres of sufficiently cool planets will impact observations made with JWST. It is necessary to use self-consistent models of temperature and chemistry in order to accurately capture the effects of flares on features in the transmission spectra of cooler gas giants, but this depends heavily on the radiation environment of the planet.
更多
查看译文
关键词
stellar flares,gas giant,temperature-chemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要