Origins of brain tissue elasticity under multiple loading modes by analyzing the microstructure-based models

BIOMECHANICS AND MODELING IN MECHANOBIOLOGY(2023)

引用 0|浏览17
暂无评分
摘要
Constitutive behaviors and material properties of brain tissue play an essential role in accurately modeling its mechanical responses. However, the measured mechanical behaviors of brain tissue exhibit a large variability, and the reported elastic modulus can differ by orders of magnitude. Here we develop the micromechanical models based on the actual microstructure of the longitudinally anisotropic plane of brain tissue to investigate the microstructural origins of the large variability. Specifically, axonal fiber bundles with the specified configurations are distributed in an equivalent matrix. All micromechanical models are subjected to multiple loading modes, such as tensile, compressive, and shear loading, under periodic boundary conditions. The predicted results agree well with the experimental results. Furthermore, we investigate how brain tissue elasticity varies with its microstructural features. It is revealed that the large variability in brain tissue elasticity stems from the volume fraction of axonal fiber, the aspect ratio of axonal fiber, and the distribution of axonal fiber orientation. The volume fraction has the greatest impact on the mechanical behaviors of brain tissue, followed by the distribution of axonal fiber orientation, then the aspect ratio. This study provides critical insights for understanding the microstructural origins of the large variability in brain tissue elasticity.
更多
查看译文
关键词
Brain tissue elasticity,Loading mode,Microstructural origin,Geometric feature
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要