Feasibility analysis of a novel non-invasive ultrasonographic method for the measurement of intra-abdominal pressure in the intensive care unit

JOURNAL OF CLINICAL MONITORING AND COMPUTING(2023)

引用 1|浏览9
暂无评分
摘要
Increased intra-abdominal pressure (IAP) is an important vital sign in critically ill patients and has a negative impact on morbidity and mortality. This study aimed to validate a novel non-invasive ultrasonographic approach to IAP measurement against the gold standard intra-bladder pressure (IBP) method. We conducted a prospective observational study in an adult medical ICU of a university hospital. IAP measurements using ultrasonography by two independent operators, with different experience levels (experienced, IAP US1 ; inexperienced, IAP US2 ), were compared with the gold standard IBP method performed by a third blinded operator. For the ultrasonographic method, decremental external pressure was applied on the anterior abdominal wall using a bottle filled with decreasing volumes of water. Ultrasonography looked at peritoneal rebound upon brisk withdrawal of the external pressure. The loss of peritoneal rebound was identified as the point where IAP was equal to or above the applied external pressure. Twenty-one patients underwent 74 IAP readings (range 2–15 mmHg). The number of readings per patient was 3.5 ± 2.5, and the abdominal wall thickness was 24.6 ± 13.1 mm. Bland and Altman’s analysis showed a bias (0.39 and 0.61 mmHg) and precision (1.38 and 1.51 mmHg) for the comparison of IAP US1 and IAP US2 and vs. IBP, respectively with small limits of agreement that were in line with the research guidelines of the Abdominal Compartment Society (WSACS). Our novel ultrasound-based IAP method displayed good correlation and agreement between IAP and IBP at levels up to 15 mmHg and is an excellent solution for quick decision-making in critically ill patients.
更多
查看译文
关键词
Compartment syndrome,Critical illness,Intensive care unit,Intra-abdominal hypertension,Abdominal pressure,Measurement,Bladder pressure,Ultrasonography
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要