A Study on the Dynamic Evolution Mechanism of the Steady Magnetic Field on the Internal Flow Behavior of a Laser Melting Pool

Songjing Xie, Ke Jiang,Liang Wang,Jianhua Yao

METALS(2023)

引用 0|浏览1
暂无评分
摘要
A 2D model of laser melting consisting of heat transfer, hydrodynamic flow, surface tension, and a free surface motion was established. A physical field simulation of the laser melting process was performed, and the effect of steady magnetic field parameters on the internal flow and temperature fields of the melt pool was analyzed and validated by experiments. The results show that the steady magnetic field can suppress the melt pool flow rate, but slightly influences its temperature field, and with an increase in the magnetic field strength, the ripples on the melting surface decrease with increasing magnetic flux density. Compared with the molten pool depth experiment results, the simulation molten pool depth was 792 mu m, representing a difference in value of 13.5%. The surface ripples of the molten pool fluctuated greatly in the absence of a magnetic field, while the surface ripples were suppressed when the magnetic flux density was 2T. This is consistent with the simulation results, thus effectively demonstrating the simulation model's accuracy.
更多
查看译文
关键词
laser melting, molten pool flow behavior, numerical simulation, steady magnetic field
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要