Deterministic Polymorphic Engineering of MoTe2 for Photonic and Optoelectronic Applications

ADVANCED FUNCTIONAL MATERIALS(2023)

引用 0|浏览10
暂无评分
摘要
Developing selective and coherent polymorphic crystals at the nanoscale offers a novel strategy for designing integrated architectures for photonic and optoelectronic applications such as metasurfaces, optical gratings, photodetectors, and image sensors. Here, a direct optical writing approach is demonstrated to deterministically create polymorphic 2D materials by locally inducing metallic 1T '-MoTe2 on the semiconducting 2H-MoTe2 host layer. In the polymorphic-engineered MoTe2, 2H- and 1T '- crystalline phases exhibit strong optical contrast from near-infrared to telecom-band ranges (1-1.5 mu m), due to the change in the band structure and increase in surface roughness. Sevenfold enhancement of third harmonic generation intensity is realized with conversion efficiency (susceptibility) of approximate to 1.7 x 10(-7) (1.1 x 10(-19) m(2) V-2) and approximate to 1.7 x 10(-8) (0.3 x 10(-19) m(2) V-2) for 1T ' and 2H-MoTe2, respectively at telecom-band ultrafast pump laser. Lastly, based on polymorphic engineering on MoTe2, a Schottky photodiode with a high photoresponsivity of 90 AW(-1) is demonstrated. This study proposes facile polymorphic engineered structures that will greatly benefit realizing integrated photonics and optoelectronic circuits.
更多
查看译文
关键词
molybdenum ditelluride, phase change, polymorphic, reflectance, Schottky photodiode, third harmonic generation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要