Assessment of finite element human body and ATD models in estimating injury risk in far-side impacts using field-based injury risk

SSRN Electronic Journal(2023)

引用 0|浏览2
暂无评分
摘要
The objective of this study was to assess the ability of finite element human body models (FEHBMs) and Anthropometric Test Device (ATD) models to estimate occupant injury risk by comparing it with field-based injury risk in far-side impacts. The study used the Global Human Body Models Consortium midsize male (M50-OS+B) and small female (F05-OS+B) simplified occupant models with a modular detailed brain, and the ES-2Re and SID-IIs ATD models in the simulated far-side crashes. A design of experiments (DOE) with a total of 252 simulations was conducted by varying lateral Delta V (10-50kph; 5kph increments), the principal direction of force (PDOF 50 degrees, 60 degrees, 65 degrees, 70 degrees, 75 degrees, 80 degrees, 90 degrees), and occupant models. Models were gravity-settled and belted into a simplified vehicle model (SVM) modified for far-side impact simulations. Acceleration pulses and vehicle intrusion profiles used for the DOE were generated by impacting a 2012 Camry vehicle model with a mobile deformable barrier model across the 7 PDOFs and 9 lateral Delta V's in the DOE for a total of 63 additional simulations. Injury risks were estimated for the head, chest, lower extremity, pelvis (AIS 2+; AIS 3+), and abdomen (AIS 3+) using logistic regression models. Combined AIS 3+ injury risk for each occupant was calculated using AIS 3+ injury risk estimations for the head, chest, abdomen, and lower extremities. The injury risk calculated using computational models was compared with field-based injury risk derived from NASS-CDS by calculating their correlation coefficient. The field-based injury risk was calculated using risk curves that were created based on real-world crash data in a previous study (Hostetler et al., 2020). Occupant age (40 years), seatbelt use (belted occupant), collision deformation classification, lateral Delta V, and PDOF of the crash event were used in these curves to estimate field injury risk. Large differences in the kinematics were observed between HBM and ATD models. ATD models tended to overestimate risk in almost every case whereas HBMs yielded better risk estimates overall. Chest and lower extremity risks were the least correlated with field injury risk estimates. The overall risk of AIS 3+ injury risk was the strongest comparison to the field data-based risk curves. The HBMs were still not able to capture all the variance but future studies can be carried out that are focused on investigating their shortfalls and improving them to estimate injury risk closer to field injury risk in far-side crashes.
更多
查看译文
关键词
Far-side impact,Human body model,ATD model,Injury risk,GHBMC
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要