Data from Semaphorin SEMA3F Affects Multiple Signaling Pathways in Lung Cancer Cells

crossref(2023)

引用 0|浏览2
暂无评分
摘要
Abstract

Loss of SEMA3F occurs frequently in lung cancer and correlates with advanced stage of disease. We previously reported that SEMA3F blocked tumor formation by H157 lung cancer cells in a rat orthotopic model. This was associated with loss of activated αVβ3 integrin, impaired cell adhesion to extracellular matrix components, and down-regulation of phospho-extracellular signal-regulated kinase 1/2 (ERK1/2). These results suggested that SEMA3F might interfere with integrin outside-in signaling. In the present report, we found that SEMA3F decreased adhesion to vitronectin, whereas integrin-linked kinase (ILK) kinase activity was down-regulated in SEMA3F-expressing H157 cells. Exposure to SEMA3F-conditioned medium led to diminution of phospho-ERK1/2 in four of eight lung cancer cell lines, and ILK silencing by small interfering RNA led to similar loss of phospho-ERK1/2 in H157 cells. Moreover, SEMA3F expression (with constitutive and inducible systems) also reduced AKT and signal transducer and activator of transcription 3 (STAT3) phosphorylation independently of ILK-ERK1/2. These signaling changes extended downstream to hypoxia-inducible factor-1α (HIF-1α) protein and vascular endothelial growth factor (VEGF) mRNA levels, which were both reduced in three of four SEMA3F-transfected cell lines. Mechanistically, the effects on HIF-1α were consistent with inhibition of its AKT-driven protein translation initiation, with no effect on HIF-1α mRNA level or protein degradation. Furthermore, when H157 cells were injected s.c. in nude mice, tumors derived from SEMA3F-expressing cells showed lower microvessel density and tumor growth. These results show that SEMA3F negatively affects ILK-ERK1/2 and AKT-STAT3 signaling, along with inhibition of HIF-1α and VEGF. These changes would be anticipated to contribute significantly to the observed antitumor activity of SEMA3F. [Cancer Res 2007;67(18):8708–15]

更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要