Fault-Tolerant Consensus in Quantum Networks

CoRR(2023)

引用 0|浏览15
暂无评分
摘要
Fault-tolerant consensus is about reaching agreement on some of the input values in a limited time by non-faulty autonomous processes, despite of failures of processes or communication medium. This problem is particularly challenging and costly against an adaptive adversary with full information. Bar-Joseph and Ben-Or (PODC'98) were the first who proved an absolute lower bound $\Omega(\sqrt{n/\log n})$ on expected time complexity of consensus in any classic (i.e., randomized or deterministic) message-passing network with $n$ processes succeeding with probability $1$ against such a strong adaptive adversary crashing processes. Seminal work of Ben-Or and Hassidim (STOC'05) broke the $\Omega(\sqrt{n/\log n})$ barrier for consensus in classic (deterministic and randomized) networks by employing quantum computing. They showed an (expected) constant-time quantum algorithm for a linear number of crashes $t更多
查看译文
关键词
consensus,networks,fault-tolerant
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要