Demonstration of sub-micron UCN position resolution using room-temperature CMOS sensor

S. Lin, J. K. Baldwin,M. Blatnik,S. M. Clayton, C. Cude-Woods, S. A. Currie, B. Filippone, E. M. Fries, P. Geltenbort, A. T. Holley,W. Li,C. -Y. Liu, M. Makela,C. L. Morris, R. Musedinovic, C. O'Shaughnessy,R. W. Pattie, D. J. Salvat,A. Saunders, E. I. Sharapov, M. Singh, X. Sun,Z. Tang, W. Uhrich, W. Wei, B. Wolfe,A. R. Young,Z. Wang

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT(2023)

引用 0|浏览16
暂无评分
摘要
High spatial resolution of ultracold neutron (UCN) measurement is of growing interest to UCN experiments such as UCN spectrometers, UCN polarimeters, quantum physics of UCNs, and quantum gravity. Here we utilize physics-informed deep learning to enhance the experimental position resolution and to demonstrate sub-micron spatial resolutions for UCN position measurements obtained using a room-temperature CMOS sensor, extending our previous work (Kuk et al., 2021; Yue et al., 2023) that demonstrated a position uncertainty of 1.5 mu m. We explore the use of the open-source software Allpix Squared to generate experiment-like synthetic hit images with ground-truth position labels. We use physics-informed deep learning by training a fully-connected neural network (FCNN) to learn a mapping from input hit images to output hit position. The automated analysis for sub-micron position resolution in UCN detection combined with the fast data rates of current and next generation UCN sources will enable improved precision for future UCN research and applications.
更多
查看译文
关键词
Ultracold neutrons,Direct detection,Solid state detector,Deep learning,Sub-micron position resolution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要