Liquid-like VASP condensates drive actin polymerization and dynamic bundling

Nature Physics(2023)

引用 9|浏览14
暂无评分
摘要
The organisation of actin filaments into bundles is required for cellular processes such as motility, morphogenesis and cell division. A network of actin-binding proteins, some of which can undergo liquid–liquid phase separation, controls filament bundling. However, it remains unclear how these liquid-like condensates contribute to filament bundling. Here we show that the processive actin polymerase and bundling protein VASP forms liquid-like droplets under physiological conditions. As actin polymerizes within VASP droplets, elongating filaments partition to the edges of the droplet to minimize filament curvature, forming an actin-rich ring within the droplet. The rigidity of this ring is balanced by the droplet’s surface tension. However, as the ring grows thicker, its rigidity increases and eventually overcomes the surface tension, deforming into a linear bundle. The fluid nature of the droplets is critical for bundling, as more solid droplets resist deformation and therefore prevent filaments from rearranging into bundles. This droplet-based bundling mechanism may be relevant to the assembly of cellular architectures rich in bundled actin filaments such as filopodia, stress fibres and focal adhesions. The protein VASP can undergo liquid–liquid phase separation. The interplay between the surface tension of the VASP droplet and actin polymerization controls the bundling of actin filaments, a necessary step for many cellular processes.
更多
查看译文
关键词
Intrinsically disordered proteins,Phase transitions and critical phenomena,Self-assembly,Physics,general,Theoretical,Mathematical and Computational Physics,Classical and Continuum Physics,Atomic,Molecular,Optical and Plasma Physics,Condensed Matter Physics,Complex Systems
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要