Floating Catalyst Chemical Vapor Deposition Patterning Nitrogen-Doped Single-Walled Carbon Nanotubes for Shape Tailorable and Flexible Micro-Supercapacitors

ADVANCED FUNCTIONAL MATERIALS(2023)

引用 3|浏览4
暂无评分
摘要
Micro-supercapacitors (MSCs) as high-power density energy storage units are designed to meet the booming development of flexible electronics, requiring simple and fast fabrication technology. Herein, a fast and direct solvent-free patterning method is reported to fabricate shape-tailorable and flexible MSCs by floating catalyst chemical vapor deposition (FCCVD). The nitrogen-doped single-walled carbon nanotubes (N-SWCNTs) are directly deposited on a patterned filter by FCCVD with designable patterns and facilely dry-transferred on versatile substrates. The obtained MSCs deliver an excellent areal capacitance of 3.6 mF cm(-2) and volumetric capacitance of 98.6 F cm(-3) at a scan rate of 5 mV s(-1) along with excellent long-term cycle stability over 125 000 circles. Furthermore, the MSCs show good performance uniformity, which can be readily integrated via connection in parallel or series to deliver a stable high voltage (4 V with five serially connected devices) and large capacitance (5.1 mF with five parallel devices) at a scan rate of 100 mV s(-1), enabling powering the light emitting displays. Therefore, this method blazes the trail of directly preparing flexible, shape-customizable, and high-performance MSCs.
更多
查看译文
关键词
all-solid-state micro-supercapacitors, flexible, floating catalyst chemical vapor deposition, N-doped single-walled carbon nanotubes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要