Evolution of iron-rich intermetallics and its effect on the mechanical properties of Al-Cu-Mn-Fe-Si alloys after thermal exposure and high-temperature tensile testing

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T(2023)

引用 4|浏览11
暂无评分
摘要
Si addition is commonly used to modify the iron-rich intermetallics in Al-Cu-Mn-Fe alloys, which is beneficial to increasing the use of recycled aluminum. Most of the available research has focused on the effect of Si content on the room-temperature mechanical properties of Al-Cu-Mn-Fe alloys. To expand the application of Al-Cu-Mn-Fe-Si alloys as light heat-resistant structural components in the automotive and aerospace industries, it is of great importance to investigate the evolution of iron-rich intermetallics and its effect on the fracture behavior of Al-Cu-Mn-Fe-Si alloys after thermal exposure and high-temperature tensile testing. In this work, the evolution of iron-rich intermetallics and the high-temperature mechanical properties of heat-treated Al-6.5Cu-0.6Mn-0.5Fe alloys with different Si contents after thermal exposure and high-temperature tensile testing were assessed by tensile tests, image analysis, scanning electron microscopy, X-Ray diffraction, transmission electron microscopy, and atomic probe tomography. The results indicate that the Al-6.5Cu-0.6Mn-0.5Fe alloys with 0.1Si and 0.5Si additions have excellent and stable high-temperature mechanical properties after long thermal exposure, which are better than those of most heat-resistant Al alloys. The high performance of the hightemperature mechanical properties is attributed to the high heat resistance of secondary intermetallics and precipitated particles. The addition of Si is detrimental to the strength of Al-6.5Cu-0.6Mn-0.5Fe alloys after long thermal exposure. This can be attributed to the solid-state phase transformation of iron-rich intermetallics from a-Fe to b-Fe, which results in the increase of needle-like Fe-rich phases and Si particles, the agglomeration of secondary intermetallics, and the consumption of Al2Cu phases. (c) 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
更多
查看译文
关键词
Aluminum -copper alloy,High impurity content,Solid-state transformation,High -temperature mechanical,properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要