Ergodicity breaking in rapidly rotating C60 fullerenes.

SCIENCE(2023)

引用 0|浏览8
暂无评分
摘要
Ergodicity, the central tenet of statistical mechanics, requires an isolated system to explore all available phase space constrained by energy and symmetry. Mechanisms for violating ergodicity are of interest for probing nonequilibrium matter and protecting quantum coherence in complex systems. Polyatomic molecules have long served as a platform for probing ergodicity breaking in vibrational energy transport. Here, we report the observation of rotational ergodicity breaking in an unprecedentedly large molecule, 12C60, determined from its icosahedral rovibrational fine structure. The ergodicity breaking occurs well below the vibrational ergodicity threshold and exhibits multiple transitions between ergodic and nonergodic regimes with increasing angular momentum. These peculiar dynamics result from the molecule's distinctive combination of symmetry, size, and rigidity, highlighting its relevance to emergent phenomena in mesoscopic quantum systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要