Facility Relocation Search For Good: When Facility Exposure Meets User Convenience.

WWW(2023)

引用 1|浏览14
暂无评分
摘要
In this paper, we propose a novel facility relocation problem where facilities (and their services) are portable, which is a combinatorial search problem with many practical applications. Given a set of users, a set of existing facilities, and a set of potential sites, we decide which of the existing facilities to relocate to potential sites, such that two factors are satisfied: (1) facility exposure: facilities after relocation have balanced exposure, namely serving equivalent numbers of users; (2) user convenience: it is convenient for users to access the nearest facility, which provides services with shorter travel distance. This problem is motivated by applications such as dynamically redistributing vaccine resources to align supply with demand for different vaccination centers, and relocating the bike sharing sites daily to improve the transportation efficiency. We first prove that this problem is NP-hard, and then we propose two algorithms: a non-learning best response algorithm () and a reinforcement learning algorithm (). In particular, the best response algorithm finds a Nash equilibrium to balance the facility-related and the user-related goals. To avoid being confined to only one Nash equilibrium, as found in the method, we also propose the reinforcement learning algorithm for long-term benefits, where each facility is an agent and we determine whether a facility needs to be relocated or not. To verify the effectiveness of our methods, we adopt multiple metrics to evaluate not only our objective, but also several other facility exposure equity and user convenience metrics to understand the benefits after facility relocation. Finally, comprehensive experiments using real-world datasets provide insights into the effectiveness of the two algorithms in practice.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要