International time transfer between precise timing facilities secured with a quantum key distribution network

arXiv (Cornell University)(2023)

引用 0|浏览31
暂无评分
摘要
Global Navigation Satellite Systems (GNSSs), such as GPS and Galileo, provide precise time and space coordinates globally and constitute part of the critical infrastructure of modern society. To reliably operate GNSS, a highly accurate and stable system time is required, such as the one provided by several independent clocks hosted in Precise Timing Facilities (PTFs) around the world. Periodically, the relative clock offset between PTFs is measured to have a fallback system to synchronize the GNSS satellite clocks. The security and integrity of the communication between PTFs is of paramount importance: if compromised, it could lead to disruptions to the GNSS service. Therefore, it is a compelling use-case for protection via Quantum Key Distribution (QKD), since this technology provides information-theoretic security. We have performed a field trial demonstration of such use-case by sharing encrypted time synchronization information between two PTFs, one located in Oberpfaffenhofen (Germany) and one in Matera (Italy) - more than 900km apart as the crow flies. To bridge this large distance, a satellite-QKD system is required, plus a "last-mile" terrestrial link to connect the optical ground station (OGS) to the actual location of the PTF. In our demonstration we have deployed two full QKD systems to protect the last-mile connection at both the locations and have shown via simulation that upcoming QKD satellites will be able to distribute keys between Oberpfaffenhofen and Matera exploiting already existing OGSs.
更多
查看译文
关键词
precise timing facilities,international time transfer,quantum
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要