Timescale separation in the coordinated switching of bacterial flagellar motors.

Physical biology(2023)

引用 0|浏览2
暂无评分
摘要
The output of the bacterial chemotaxis signaling pathway, the level of the intracellular regulator CheY-P, modulates the rotation direction of the flagellar motor, thereby regulating bacterial run-and-tumble behavior. The multiple flagellar motors on an E. coli cell are controlled by a common cytoplasmic pool of CheY-P. Fluctuation of the CheY-P level was thought to be able to coordinate the switching of multiple motors. Here, we measured the correlation of rotation directions between two motors on a cell, finding that it surprisingly exhibits two well separated timescales. We found that the slow timescale (∼6 s) can be explained by the slow fluctuation of the CheY-P level due to stochastic activity of the chemotactic adaptation enzymes, whereas the fast timescale (∼0.3 s) can be explained by the random pulse-like fluctuation of the CheY-P level, due probably to the activity of the chemoreceptor clusters. We extracted information on the properties of the fast CheY-P pulses based on the correlation measurements. The two well-separated timescales in the fluctuation of CheY-P level help to coordinate multiple motors on a cell and to enhance bacterial chemotactic performance. .
更多
查看译文
关键词
bacterial motility,coordination,flagellar motor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要