Cyclic nonlinear interferometry with entangled non-Gaussian spin states

PHYSICAL REVIEW A(2023)

引用 0|浏览6
暂无评分
摘要
We propose an efficient nonlinear readout scheme for entangled non-Gaussian spin states (ENGSs) based on the intrinsic quasi-cyclic dynamics of interacting spin-1/2 systems. We focus on two well-known spin models of twist-and-turn (TNT) and two-axis-counter-twisting (TACT), where ENGS can be generated by spin dynamics starting from unstable fixed points. In the TNT model, non-Gaussian probe state evolves directly back to the vicinity of initial state during the subsequent time-forward evolution for path recombining, accompanied by quantum magnification of encoded signal and refocusing of the associated quantum noise. Based on low-order moment measurement, we find the optimal metrological gain nearly saturates the quantum Cramer-Rao bound (QCRB) and follows the Heisenberg scaling. For the TACT case, the QCRB can also be nearly approached when the state converges to either of the two unstable fixed points, respectively corresponding to the initial state or its orthogonal coherent state. The latter case goes beyond previous studies where tracing back to or crossing the initial states is mostly considered. The present protocol does not require time-reversal as in typical nonlinear interferometries, and it also avoids complicated measurement of nonlinear observables or full probability distributions. The operational approach we discuss presents a practical way for realizing high-precision and detection-noise-robust quantum metrology with ENGS.
更多
查看译文
关键词
cyclic nonlinear interferometry,spin,non-gaussian
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要