A -Conjugated Van der Waals Heterostructure Between Single-Atom Ni-Anchored Salphen-Based Covalent Organic Framework and Polymeric Carbon Nitride for High-Efficiency Interfacial Charge Separation

Small (Weinheim an der Bergstrasse, Germany)(2023)

引用 6|浏览7
暂无评分
摘要
Semiconductor-based heterostructures have exhibited great promise as a photocatalyst to convert solar energy into sustainable chemical fuels, however, their solar-to-fuel efficiency is largely restricted by insufficient interfacial charge separation and limited catalytically active sites. Here the integration of high-efficiency interfacial charge separation and sufficient single-atom metal active sites in a 2D van der Waals (vdW) heterostructure between ultrathin polymeric carbon nitride (p-CN) and Ni-containing Salphen-based covalent organic framework (Ni-COF) nanosheets is illustrated. The results reveal a Ni-N-2-O-2 chemical bonding in NiCOF nanosheets, leading to a highly separated single-atom Ni sites, which will function as the catalytically active sites to boost solar fuel production, as confirmed by X-ray absorption spectra and density functional theory calculations. Using ultrafast femtosecond transient adsorption (fs-TA) spectra, it shows that the vdW p-CN/Ni-COF heterostructure exhibits a faster decay lifetime of the exciton annihilation (t = 18.3 ps) compared to that of neat p-CN (32.6 ps), illustrating an efficiently accelerated electron transfer across the vdW heterointerface from p-CN to Ni-COF, which thus allows more active electrons available to participate in the subsequent reduction reactions. The photocatalytic results offer a chemical fuel generation rate of 2.29 mmol g(-1) h(-1) for H-2 and 6.2 mu mol g(-1) h(-1) for CO, approximate to 127 and three times higher than that of neat p-CN, respectively. This work provides new insights into the construction of a pi-conjugated vdW heterostructure on promoting interfacial charge separation for high-efficiency photocatalysis.
更多
查看译文
关键词
carbon nitride,covalent organic framework,photocatalysis,single atom catalysts,van der Waals heterostructures
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要