Physical Layer Security for STAR-RIS-NOMA in Large-Scale Networks

CoRR(2023)

引用 1|浏览9
暂无评分
摘要
In this paper, an analytical framework for secure simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) assisted non-orthogonal multiple access (NOMA) transmissions in large-scale networks is proposed, where users and eavesdroppers are randomly distributed. Both the time-switching protocol (TS) and energy splitting (ES) protocol are considered for the STAR-RIS. To characterize system performance, the channel statistics are first provided, and the Gamma approximation is adopted for general cascaded $\kappa$-$\mu$ fading. Afterward, the closed-form expressions for both the secrecy outage probability and secrecy ergodic rate are derived. To obtain further insights, the asymptotic performance for the secrecy diversity order and the secrecy slope are deduced. The theoretical results show that 1) the secrecy diversity orders of the strong user and the weak user depend on the path loss exponent and the distribution of the received signal-to-noise ratio, respectively; 2) the secrecy slope of the ES protocol achieves the value of one, higher than the slope of the TS protocol which is the mode operation parameter of TS. The numerical results demonstrate that: 1) there is an optimal STAR-RIS mode operation parameter to maximize the system performance; 2) the STAR-RIS-NOMA significantly outperforms the STAR-RIS-orthogonal multiple access.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要