Drug Cocktail Formulation via Circuit Design

IEEE Transactions on Molecular, Biological and Multi-Scale Communications(2023)

引用 0|浏览13
暂无评分
摘要
Electronic circuits intuitively visualize and quantitatively simulate biological systems with nonlinear differential equations that exhibit complicated dynamics. Drug cocktail therapies are a powerful tool against diseases that exhibit such dynamics. We show that just six key states, which are represented in a feedback circuit, enable drug-cocktail formulation: 1) healthy cell number; 2) infected cell number; 3) extracellular pathogen number; 4) intracellular pathogenic molecule number; 5) innate immune system strength; and 6) adaptive immune system strength. To enable drug cocktail formulation, the model represents the effects of the drugs in the circuit. For example, a nonlinear feedback circuit model fits measured clinical data, represents cytokine storm and adaptive autoimmune behavior, and accounts for age, sex, and variant effects for SARS-CoV-2 with few free parameters. The latter circuit model provided three quantitative insights on the optimal timing and dosage of drug components in a cocktail: 1) antipathogenic drugs should be given early in the infection, but immunosuppressant timing involves a tradeoff between controlling pathogen load and mitigating inflammation; 2) both within and across-class combinations of drugs have synergistic effects; 3) if they are administered sufficiently early in the infection, anti-pathogenic drugs are more effective at mitigating autoimmune behavior than immunosuppressant drugs.
更多
查看译文
关键词
Immune system,Integrated circuit modeling,Drugs,Adaptation models,COVID-19,Biological system modeling,Mathematical models,Analog circuits,biological circuits,circuit techniques for drug design,drug cocktail evaluation,SARS-CoV-2
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要