Predefined-Time Zeroing Neural Networks With Independent Prior Parameter for Solving Time-Varying Plural Lyapunov Tensor Equation.

IEEE transactions on neural networks and learning systems(2023)

引用 0|浏览6
暂无评分
摘要
As an extension of the Lyapunov equation, the time-varying plural Lyapunov tensor equation (TV-PLTE) can carry multidimensional data, which can be solved by zeroing neural network (ZNN) models effectively. However, existing ZNN models only focus on time-varying equations in field of real number. Besides, the upper bound of the settling time depends on the value of ZNN model parameters, which is a conservative estimation for existing ZNN models. Therefore, this article proposes a novel design formula for converting the upper bound of the settling time into an independent and directly modifiable prior parameter. On this basis, we design two new ZNN models called strong predefined-time convergence ZNN (SPTC-ZNN) and fast predefined (FP)-time convergence ZNN (FPTC-ZNN) models. The SPTC-ZNN model has a nonconservative upper bound of the settling time, and the FPTC-ZNN model has excellent convergence performance. The upper bound of the settling time and robustness of the SPTC-ZNN and FPTC-ZNN models are verified by theoretical analyses. Then, the effect of noise on the upper bound of settling time is discussed. The simulation results show that the SPTC-ZNN and FPTC-ZNN models have better comprehensive performance than existing ZNN models.
更多
查看译文
关键词
Mathematical models,Upper bound,Tensors,Convergence,Numerical models,Neural networks,Data models,Non-conservative,predefined-time convergence,time-varying plural Lyapunov tensor equation (TV-PLTE),zeroing neural network (ZNN)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要