Unlocking the Potential of Induced Pluripotent Stem Cells for Neonatal Disease Modeling and Drug Development

Seminars in Perinatology(2023)

引用 0|浏览0
暂无评分
摘要
Neonatal lung and heart diseases, albeit rare, can result in poor quality of life, often require long-term management and/or organ transplantation. For example, Congenital Heart Disease (CHD) is one of the most common type of congenital disabilities, affecting nearly 1% of the newborns, and has complex and multifactorial causes, including genetic predisposition and environmental influences. To develop new strategies for heart and lung regeneration in CHD and neonatal lung disease, human induced pluripotent stem cells (hiPSCs) provide a unique and personalized platform for future cell replacement therapy and high-throughput drug screening. Additionally, given the differentiation potential of iPSCs, cardiac cell types such as cardiomyocytes, endothelial cells, and fibroblasts and lung cell types such Type II alveolar epithelial cells can be derived in a dish to study the fundamental pathology during disease progression. In this review, we discuss the applications of hiPSCs in understanding the molecular mechanisms and cellular phenotypes of CHD (e.g., structural heart defect, congenital valve disease, and congenital channelopathies) and congenital lung diseases, such as surfactant deficiencies and Brain-Lung-Thyroid syndrome. We also provide future directions for generating mature cell types from iPSCs, and more complex hiPSC-based systems using three-dimensional (3D) organoids and tissue-engineering. With these potential advancements, the promise that hiPSCs will deliver new CHD and neonatal lung disease treatments may soon be fulfilled.
更多
查看译文
关键词
Congenital heart disease,Congenital lung disorder,Disease modeling,Drug development,Human induced pluripotent stem cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要