Sr2+doped CsPbBrI2perovskite nanocrystals coated with ZrO2for applications as white LEDs.

Nanotechnology(2023)

引用 1|浏览0
暂无评分
摘要
Perovskite nanocrystals (NCs) feature adjustable bandgap, wide absorption range, and great color purity for robust perovskite optoelectronic applications. Nevertheless, the absence of lasting stability under continues energization, is still a major hurdle to the widespread use of NCs in commercial applications. In particular, the reactivity of red-emitting perovskites to environmental surroundings is more sensitive than that of their green counterparts. Here, we present a simple synthesis of ultrathin ZrO2coated, Sr2+doped CsPbBrI2NCs. Introducing divalent Sr2+may significantly eliminate Pb° surface traps, whereas ZrO2encapsulation greatly improves environmental stability. The photoluminescence quantum yield of the Sr2+-doped CsPbBrI2/ZrO2NCs was increased from 50.2% to 87.2% as a direct consequence of the efficient elimination of Pb° surface defects. Moreover, the thickness of the ZrO2thin coating gives remarkable heat resistance and improved water stability. Combining CsPbSr0.3BrI2/ZrO2NCs in a white light emitting diode (LED) with an excellent optical efficiency (100.08 lm W-1), high and a broad gamut 141% (NTSC) standard. This work offers a potential method to suppress Pb° traps by doping with Sr2+and improves the performance of perovskite NCs by ultrathin coating structured ZrO2, consequently enabling their applicability in commercial optical displays.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要