Potential quantum advantage for simulation of fluid dynamics

arxiv(2023)

引用 0|浏览12
暂无评分
摘要
Numerical simulation of turbulent fluid dynamics needs to either parameterize turbulence-which introduces large uncertainties-or explicitly resolve the smallest scales-which is prohibitively expensive. Here we provide evidence through analytic bounds and numerical studies that a potential quantum exponential speedup can be achieved to simulate the Navier-Stokes equations governing turbulence using quantum computing. Specifically, we provide a formulation of the lattice Boltzmann equation for which we give evidence that low-order Carleman linearization is much more accurate than previously believed for these systems and that for computationally interesting examples. This is achieved via a combination of reformulating the nonlinearity and accurately linearizing the dynamical equations, effectively trading nonlinearity for additional degrees of freedom that add negligible expense in the quantum solver. Based on this we apply a quantum algorithm for simulating the Carleman-linerized lattice Boltzmann equation and provide evidence that its cost scales logarithmically with system size, compared to polynomial scaling in the best known classical algorithms. This work suggests that an exponential quantum advantage may exist for simulating fluid dynamics, paving the way for simulating nonlinear multiscale transport phenomena in a wide range of disciplines using quantum computing.
更多
查看译文
关键词
potential quantum advantage,simulation,dynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要