Any platonic solid can transform to another by O(1) refoldings

Computational Geometry(2023)

引用 0|浏览24
暂无评分
摘要
We show that several classes of polyhedra are joined by a sequence of O(1) refolding steps, where each refolding step unfolds the current polyhedron (allowing cuts anywhere on the surface and allowing overlap) and folds that unfolding into exactly the next polyhedron; in other words, a polyhedron is refoldable into another polyhedron if they share a common unfolding. Specifically, assuming equal surface area, we prove that (1) any two tetramonohedra are refoldable to each other, (2) any doubly covered triangle is refoldable to a tetramonohedron, (3) any (augmented) regular prismatoid and doubly covered regular polygon is refoldable to a tetramonohedron, (4) any tetrahedron has a 3-step refolding sequence to a tetramonohedron, and (5) the regular dodecahedron has a 4-step refolding sequence to a tetramonohedron. In particular, we obtain a ≤6-step refolding sequence between any pair of Platonic solids, applying (5) for the dodecahedron and (1) and/or (2) for all other Platonic solids. As far as the authors know, this is the first result about common unfolding involving the regular dodecahedron.
更多
查看译文
关键词
Unfolding of polyhedra,Common unfolding,Refolding dissection,Reconfiguration problem
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要