Multi-fidelity vortex simulations of rotor flows: Validation against detailed wake measurements

Computers & Fluids(2023)

引用 1|浏览5
暂无评分
摘要
Two flow models with different fidelity of the DTU vortex solver MIRAS have been used to simulate the wake generated by a model wind turbine with various levels of asymmetry. Predictions are validated against experimental Particle Image Velocimetry measurements and dye visualizations. The experiments were conducted in a recirculating free-surface water channel with an immersed two-bladed rotor mounted on a shaft. The blades were designed to approximate a Joukowsky rotor. A detailed comparison between the measurements and the simulations is first performed for an unperturbed baseline case at different tip speed ratios. The analysis consists of a tip vortex characterization, including the vortex core profile, and a comparison of the instantaneous and mean velocity and vorticity fields, along with the mean wake profile at different downstream locations. Overall, good agreement is obtained between measurements and simulations, especially with the higher-fidelity particle-mesh model, which is capable of very closely predicting many of the flow features observed in the experiments. Rotor asymmetry triggers a vortex instability, commonly known as leapfrogging, which accelerates the breakdown of tip vortices, enhancing the mixing of wake structures and promoting a faster wake recovery. The prediction accuracy of this instability by the solvers is analyzed for different tip speed ratios and perturbation amplitudes. This work aims at setting the groundwork for future flow instability studies with the MIRAS solver.
更多
查看译文
关键词
Vortex methods,Particle-Image Velocimetry,Rotor wake,Helical vortices
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要