Photonic entanglement during a zero-g flight

QUANTUM(2024)

引用 0|浏览14
暂无评分
摘要
Quantum technologies have matured to the point that we can test fundamental quantum phenomena under extreme conditions. Specifically, entanglement, a cornerstone of modern quantum information theory, can be robustly produced and verified in various adverse environments. We take these tests further and implement a high-quality Bell experiment during a parabolic flight, transitioning from microgravity to hypergravity of 1.8 g while continuously observing Bell violation, with Bell-CHSH parameters between S = -2.6202 and -2.7323, an average of S = -2.680, and average standard deviation of increment S = 0.014. This violation is unaffected both by uniform and non-uniform acceleration. This experiment demonstrates the stability of current quantum communication platforms for space-based applications and adds an important reference point for testing the interplay of non-inertial motion and quantum information.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要