Spider mite resistant maize lines, B75 and B96, maintain resistance under water-stress

Journal of Pest Science(2022)

引用 3|浏览2
暂无评分
摘要
Climate variability has major implications for agriculture due to the increase in the frequency and intensity of simultaneous abiotic, namely water-stress, and biotic stresses to crops. Plant water-stress alone harms crops but also can attract outbreaks of herbivores with varied host specialization, and plants succumb to further yield losses dealing with multiple stressors. Host plant resistance provides a route to lessen yield losses from herbivory; however, our knowledge of the interactions between water-stress and pest resistance is limited, especially for mite herbivores of maize including the generalist two-spotted spider mite ( Tetranychus urticae, TSM) and the specialist Banks grass mite ( Oligonychus pratensis, BGM). We conducted parallel greenhouse and field experiments whereby a susceptible line (B73) and two TSM-resistant lines (B75 and B96) were subjected to either optimal irrigation or water-stress [50–60% and 5–10% volumetric water content (VWC), and 25–32% and 10–15% VWC, in the greenhouse and field, respectively] to test whether pest-resistant lines maintain their resistance when exposed to water-stress. We found that under optimal irrigation, TSM and BGM populations increased readily on B73, while B75 and B96 were largely resistant to the TSM but not BGM. While plant water-stress increased the susceptibility of B73 to both mite species, water-stress did not disrupt initial resistance levels of B75 and B96 maize for either mite species. Elevated protease activity was found in B75 and B96 and may contribute to maize resistance. Our findings that B75 and B96 are highly resistant to the TSM, and maintain resistance to both mite species with water-stress, highlight the importance of including the nuances of multiple stressors within the framework of host plant resistance.
更多
查看译文
关键词
Tetranychus urticae,Oligonychus pratensis,Host plant resistance,Drought,Chitinase,Trypsin inhibitor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要