Nanosized amorphous nickel-boron alloy electrocatalysts for hydrogen evolution reaction under alkaline conditions

Journal of Fuel Chemistry and Technology(2023)

引用 1|浏览2
暂无评分
摘要
Hydrogen production from electrolyzed water driven by sustainable energy is an effective way to achieve the hydrogen economy with zero carbon emission. Alkaline electrocatalytic hydrogen evolution reaction (HER) is one of the main energy transforming processes in the field of electrolytic water technology. The development of active and cost-effective nonprecious catalytic electrodes is of great importance to alkaline hydrogen evolution reaction. Amorphous nanosized nickel-boron alloy particles (NiB-COS) have been obtained by using chitosan oligosaccharides (COS) as a stabilizer via chemical reduction method. The as-prepared electrocatalysts have been used for the hydrogen evolution reaction (HER). The electrocatalysts have been characterized by using X-ray diffraction (XRD), transmission electron microscopy (TEM), inductively coupled plasma analysis (ICP) and X-ray photoelectron spectroscopy (XPS). NiB-COS displays a significant increase in hydrogen evolution reaction properties in alkaline media, affording low overpotentials of 49.4 mV at 10 mA/cm2 and 15.1 mV onset overpotential for the hydrogen evolution reaction. Tafel slope of NiB-COS is 86.1 mV/dec. Remarkably, the formation of a nickel-boron alloyed phase and the decrease of particle size are helpful to improve HER activity of NiB-COS. The experimental data indicated that the NiB-COS showed excellent long-term stability as a very active electrocatalyst.
更多
查看译文
关键词
hydrogen evolution reaction,NiB-COS,overpotential,Tafel slope,alkaline water electrolysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要